Multiplication Basic Facts Check-Up
Teacher Guide
LEARNING
THROUGH DOING

Item	Correct Answer / Expected Response	Concept / Objective	Alternate responses and possible reasoning / errors	Learning Through Doing lessons
1	2 (or two)	Set model Ability to see a group as a unit (unitising) There are 3 stars in each group. There are 2 groups of three stars.	3 - focus is on the number in each group 6 - focus is on the total number of stars not the groups	Multiplication - Set model (Joining Equal groups)
2	$2^{\text {nd }}$ option (3 groups of 4 triangles)	Interpret a multiplicative expression as a number OF groups and a number IN EACH group	Option 1 - additive thinking $(3+4)$ Option 3 - multiplicative but reversed. This picture shows 4 threes rather than 3 fours. Correct total. Incorrect format.	Multiplication - Set Model (Joining Equal Groups)
3	5 (or five)	Length model Multiplication as equal jumps - Number OF jumps and size or number IN EACH jump	4 - multiplicative thinking but looking at number OF groups instead of size of the jump 6 - additive thinking counting the number of marks between not spaces	Multiplication - Length Model (Number lines)
4	18 (3x6)	Area Model Multiplication as a number OF rows and number IN EACH row	8 - count of the number shown in diagram 10 - number need to complete the fill 15 - see 2 fives needed to fill and thought 3 fives or added to top row	Multiplication Area Model (Arrays)
5	$\begin{aligned} & \hline 1^{\text {st }} \text { option } \\ & \text { hearts } 2 \times 1) \\ & 3^{\text {rd }} \text { option } \\ & (2 \text { rows of } 3 \\ & \text { diamonds } 2 \times 3) \end{aligned}$	Double as 2 of the same item or quantity. Double as any multiplicative situation where the number OF groups is 2.	Partially correct - Choose one correct only - thought they only needed 1 Or didn't recognise the other Option 2 (3 threes) focus on same number OF groups and IN EACH. Saw equal groups but wrong number IN EACH group Option 4 - (5 stars - 1 five) could be looking at symmetry	Multiplication - Basic Facts 2x (Doubles Strategy)
6	Any array that represents rows of 9	Area Model Connecting Multiplication to Area. Seeing Multiplication as a number OF rows and a number IN EACH row	Additive thinking - shade 3 spaces and 9 spaces Any array that is not 3×9. Shows multiplicative thinking but wrong factors An array of 9×3 can't fit in the space provided so can't reverse the expression	Multiplication Area Model (Arrays)

Item	Correct Answer / Expected Response	Concept / Objective	Alternate responses and possible reasoning / errors	Learning Through Doing lessons
7	$1^{\text {st }}$ option (6+6) - repeated addition $4^{\text {th }}$ option (6x2- commutativity)	Multiplication as repeated addition. Multiplication as a commutative operation	Option 2 - focus on 12 as the answer to 2×6 and retain the $2 x$ format Option 3 - focus on two numbers the same but multiplication (square not double) Option 5 - thinking additive representation is the same as multiplicative	Multiplication - Set Model (Joining Equal Groups) Multiplication A commutative operation
8	$2^{\text {nd }}$ Option (Half of 10×8) $4^{\text {th }}$ option (8×5) $5^{\text {th }}$ option ($8+8+8+8+8$ shows repeated addition as 5 eights)	$5 x$ strategy as half of 10x Multiplication as a commutative operation (turn arounds)	Option 1 (5+8) - thinking addition the same as multiplication Option $3(5+5+5+5+5)$ repeated addition but the wrong number IN EACH group. 5 fives instead of 5 eights.	Multiplication - Basic Fact 5x (Half of 10x) Multiplication - A Commutative Operation
9	```3 'rd Option - (3+3+3+3)- repeated addition 4h}\mathrm{ Option (Double Double 3) 5 th Option (3x4) - commutativity```	4x strategy as Double Double Multiplication as a commutative operation	Option 1 - (4+3) - double 3 thinking addition the same as multiplication Option 2 - double ($2 x$ not 4 x)	Multiplication - Basic Fact 4x 8x (Extended Doubles) Multiplication - A Commutative Operation
10	$1^{\text {st }}$ option $(5 \times 6+2 \times 6)$ $4^{\text {th }}$ option $(8 \times 6-1 \times 6)$ $5^{\text {th }}$ option (Double 3x7)	$7 x$ strategy as $5 x+2 x$ or $8 x-1 x$ Commutative principle to swap a multiplication so a different strategy can be used - see $7 x 6$ as $6 x 7$ and use Double 3x	$2^{\text {nd }}$ option - double is a multiplication strategy but not for $7 x$ $3^{\text {rd }}$ option - additive thinking only 5 sevens represented not 6 sevens	Multiplication Basic Fact 7x ($5 x+2 x$ or $8 \mathrm{x}-1 \mathrm{x}$) Multiplication 6x (Double $3 x$ or $5 x+1 x$) Multiplication A commutative operation

Item	Correct Answer / Expected Response	Concept / Objective	Alternate responses and possible reasoning / errors	Learning Through Doing lessons
11	Recall multiplication facts	Automaticity knowing facts 'off-byheart'.	Looking for a pattern in the facts that are not known 'off by heart'. Marking multiple facts with X will indicate the particular groups of facts a student is not familiar with e.g. $6 x 7 x$ $8 \times 9 x$ are commonly left out. Lessons can target strategies for these facts. After lessons have been taught the number of facts completed improves as does student confidence	Multiplication Basic Facts 2x Multiplication - Basic Facts 3x Multiplication - Basic Facts 1x 0x Multiplication - Basic Facts 10x Multiplication - Basic Facts 5x Multiplication - Basic Facts $4 \mathrm{x}, 8 \mathrm{x}$ Multiplication - Basic Facts 9x Multiplication - Basic Facts 6x Multiplication - Basic Facts 7x Multiplication - Basic Facts Strategy Review

Notes:

Look for concepts across questions - e.g. consistent incorrect answers:

- Choosing additive representations for multiplication - check response Question 2 (Option 1:3+4), Question 7 (Option 5: 2+6), Question 8 (Option 1: 5+8) and Question 9 Option 1: 4+3)
- Multiplication Area model. Compare responses between Question 1 and Question 6.
- Multiplication as repeated addition - check responses to Question 1, Question 2 (Choose Option 2 - correct or Option 3: incorrect but thinking repeated addition), Question 8 (Option 3 or 5), Question 9 (Options 3) and Question 10 (Option 3)

